User:Papaltine/ProtoGraph: Difference between revisions

From Resonite Wiki
No edit summary
Update links, examples, and people
Line 16: Line 16:
* '''Influenced by''': F#, Elm, Python, Haskell, VHDL, Odin, Go
* '''Influenced by''': F#, Elm, Python, Haskell, VHDL, Odin, Go
* '''Showcase World''': https://go.resonite.com/world/U-1O4IcGhlKSm/R-2045c574-dda6-4a7e-9955-56d2ca002d78
* '''Showcase World''': https://go.resonite.com/world/U-1O4IcGhlKSm/R-2045c574-dda6-4a7e-9955-56d2ca002d78
* [https://flux-sdk.samsmucny.com/ Documentation]


== Who Should Use ProtoGraph? ==
== Who Should Use ProtoGraph? ==
Line 39: Line 40:
# Import the <code>.brson</code> file into Resonite
# Import the <code>.brson</code> file into Resonite
# Inspect the generated ProtoFlux under the corresponding slot
# Inspect the generated ProtoFlux under the corresponding slot
=== Flux UI ===
The [https://flux-sdk.samsmucny.com/UI/Flux-SDK-UI.html Flux UI] can be used in Resonite to link up the sources and drives from generated ProtoFlux.


== Examples ==
== Examples ==
== Cross Product Module ==
== Cross Product Module ==
This is a simple pure module that transforms input data into outputs.<syntaxhighlight lang="fsharp" line="1">
This is a simple pure module that transforms input data into outputs.<syntaxhighlight lang="fsharp" line="1">
/// Multiplies two 3D vectors using a cross product
module CrossProduct
module CrossProduct


/// The first vector
in A: float3
in A: float3
/// The second vector
in B: float3
in B: float3


/// The result of (A X B)
out this: float3
out this: float3


where {
where {
// Inputs
    // Inputs
Ax, Ay, Az = Unpack_Float3(A);
    Ax, Ay, Az = Unpack_Float3(A);
Bx, By, Bz = Unpack_Float3(B);
    Bx, By, Bz = Unpack_Float3(B);


// Computations
    // Computations
Cx = (Ay * Bz) - (Az * By);
    Cx = (Ay * Bz) - (Az * By);
Cy = (Az * Bx) - (Ax * Bz);
    Cy = (Az * Bx) - (Ax * Bz);
Cz = (Ax * By) - (Ay * Bx);
    Cz = (Ax * By) - (Ay * Bx);


// Final result
    // Final result
Pack_Float3(Cx, Cy, Cz);
    Pack_Float3(Cx, Cy, Cz);
}
}
</syntaxhighlight>
</syntaxhighlight>
Line 67: Line 75:
== Counter Object ==
== Counter Object ==
This shows how you can write an object that maintains internal state and exposes methods to be called.<syntaxhighlight lang="fsharp" line="1">
This shows how you can write an object that maintains internal state and exposes methods to be called.<syntaxhighlight lang="fsharp" line="1">
/// A simple object state machine that can count up and down
module Counter
module Counter


out this: int // The current value of the counter
/// The current value of the counter
out this: int


// Public methods
/// Public method to count up
out Increment: Impulse
out Increment: Impulse
/// Public method to count down
out Decrement: Impulse
out Decrement: Impulse
/// Public method that sets counter to 0
out Reset: Impulse
out Reset: Impulse


where {
where {
// Variables are not shared with other nodes, they are private
    // Variables are not shared with other nodes, they are private
sync CounterVar: int;
    sync CounterVar: int;


// out impulses are methods on the object that send it messages
    // out impulses are methods on the object that send it messages
// to do different actions
    // to do different actions
Reset = CounterVar <- 0;
    Reset = CounterVar <- 0;


Increment = CounterVar <- ValueInc(CounterVar);
    Increment = CounterVar <- ValueInc(CounterVar);


Decrement = CounterVar <- ValueDec(CounterVar);
    Decrement = CounterVar <- ValueDec(CounterVar);


// We can also expose normal data. This is like a getter.
    // We can also expose normal data. This is like a getter.
CounterVar;
    CounterVar;
}
}
</syntaxhighlight>
</syntaxhighlight>

Revision as of 12:57, 2 September 2025

ProtoGraph is a declarative programming language designed to work with ProtoFlux in the Resonite ecosystem. It allows creators to write logic in a clean, readable text format that compiles directly into ProtoFlux nodes—making it easier to build, test, and maintain complex systems.

Overview

Who Should Use ProtoGraph?

  • Creators who want to move beyond visual scripting
  • Developers building modular, reusable systems
  • Teams collaborating on large-scale Resonite projects

Benefits

  • Readable: Clean syntax that mirrors ProtoFlux
  • Modular: Encourages reusable and easy to refactor code
  • Reliable: Compiler checks help catch errors early
  • Accessible: Friendly to those familiar with ProtoFlux as a first programming language

Building and Using in Resonite

Getting Started

  1. Write your .pg file
  2. Compile it:
flux-sdk build MyModule.pg
  1. Import the .brson file into Resonite
  2. Inspect the generated ProtoFlux under the corresponding slot

Flux UI

The Flux UI can be used in Resonite to link up the sources and drives from generated ProtoFlux.

Examples

Cross Product Module

This is a simple pure module that transforms input data into outputs.

/// Multiplies two 3D vectors using a cross product
module CrossProduct

/// The first vector
in A: float3
/// The second vector
in B: float3

/// The result of (A X B)
out this: float3

where {
    // Inputs
    Ax, Ay, Az = Unpack_Float3(A);
    Bx, By, Bz = Unpack_Float3(B);

    // Computations
    Cx = (Ay * Bz) - (Az * By);
    Cy = (Az * Bx) - (Ax * Bz);
    Cz = (Ax * By) - (Ay * Bx);

    // Final result
    Pack_Float3(Cx, Cy, Cz);
}

Counter Object

This shows how you can write an object that maintains internal state and exposes methods to be called.

/// A simple object state machine that can count up and down
module Counter

/// The current value of the counter
out this: int

/// Public method to count up
out Increment: Impulse
/// Public method to count down
out Decrement: Impulse
/// Public method that sets counter to 0
out Reset: Impulse

where {
    // Variables are not shared with other nodes, they are private
    sync CounterVar: int;

    // out impulses are methods on the object that send it messages
    // to do different actions
    Reset = CounterVar <- 0;

    Increment = CounterVar <- ValueInc(CounterVar);

    Decrement = CounterVar <- ValueDec(CounterVar);

    // We can also expose normal data. This is like a getter.
    CounterVar;
}

See Also